The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 121 – 140 of 175

Showing per page

On the topology of polynomials with bounded integer coefficients

De-Jun Feng (2016)

Journal of the European Mathematical Society

For a real number q > 1 and a positive integer m , let Y m ( q ) : = i = 0 n ϵ i q i : ϵ i 0 , ± 1 , ... , ± m , n = 0 , 1 , ... . In this paper, we show that Y m ( q ) is dense in if and only if q < m + 1 and q is not a Pisot number. This completes several previous results and answers an open question raised by Erdös, Joó and Komornik [8].

Représentation des entiers naturels et suites uniformément équiréparties

Jean Coquet (1982)

Annales de l'institut Fourier

s ( n ) désigne la somme des chiffres de l’entier n en base q et σ α ( n ) la somme des chiffres de n associée au développement de α en fraction continue. Dans un article paru aux Annales de l’Institut Fourier (31 (1981), 1–15), Coquet, Rhin et Toffin montrent que, lorsque x ou y est irrationnel, la suite x s + y σ α est équirépartie modulo 1. On précise ici que l’équirépartition est uniforme.

Représentations des entiers naturels et indépendance statistique. II

Jean Coquet, Georges Rhin, Philippe Toffin (1981)

Annales de l'institut Fourier

s ( n ) désigne la somme des chiffres de l’entier n en base q et σ α ( n ) la somme des chiffres de n associée au développement en fraction continue de α . La suite ( x s ( n ) + y α α ( n ) ) n N est équirépartie modulo 1 si et seulement si x ou y est irrationnel.

Currently displaying 121 – 140 of 175