The search session has expired. Please query the service again.
Displaying 81 –
100 of
161
The Brun-Titchmarsh theorem shows that the number of primes which are less than x and congruent to a modulo q is less than (C+o(1))x/(ϕ(q)logx) for some value C depending on logx/logq. Different authors have provided different estimates for C in different ranges for logx/logq, all of which give C>2 when logx/logq is bounded. We show that one can take C=2 provided that logx/logq ≥ 8 and q is sufficiently large. Moreover, we also produce a lower bound of size when logx/logq ≥ 8 and is bounded....
Let denote an almost-prime with at most prime factors, counted according to multiplicity. Suppose that and are positive integers satisfying . Denote by the least almost-prime which satisfies . It is proved that for sufficiently large , there holds
This result constitutes an improvement upon that of Iwaniec (1982), who obtained the same conclusion, but for the range in place of .
Let denote a positive integer with at most prime factors, counted according to multiplicity. For integers , such that , let denote the least in the arithmetic progression . It is proved that for sufficiently large , we have
This result constitutes an improvement upon that of J. Li, M. Zhang and Y. Cai (2023), who obtained
For and any sufficiently large odd we show that for almost all there exists a representation with primes mod for almost all admissible triplets of reduced residues mod .
Currently displaying 81 –
100 of
161