The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 61 –
80 of
218
In this note, we study those positive integers which are divisible by , where is the Carmichael function.
Let denote the error term in the Dirichlet divisor problem, and let E(T) denote the error term in the asymptotic formula for the mean square of |ζ(1/2+it)|. If E*(t) := E(t) - 2πΔ*(t/(2π)) with Δ*(x) = -Δ(x) + 2Δ(2x) - 1/2Δ(4x) and , then we obtain a number of results involving the moments of |ζ(1/2+it)| in short intervals, by connecting them to the moments of E*(T) and R(T) in short intervals. Upper bounds and asymptotic formulae for integrals of the form
∫T2T(∫t-Ht+H |ζ(1/2+iu|2 duk dtare...
Let σ(n) denote the sum of positive divisors of the integer n, and let ϕ denote Euler's function, that is, ϕ(n) is the number of integers in the interval [1,n] that are relatively prime to n. It has been conjectured by Mąkowski and Schinzel that σ(ϕ(n))/n ≥ 1/2 for all n. We show that σ(ϕ(n))/n → ∞ on a set of numbers n of asymptotic density 1. In addition, we study the average order of σ(ϕ(n))/n as well as its range. We use similar methods to prove a conjecture of Erdős that ϕ(n-ϕ(n)) < ϕ(n)...
Currently displaying 61 –
80 of
218