Courbes définies sur les corps de séries formelles et loi de réciprocité (Acta Arithmetica 42 (1982), p. 101-106) (Errata)
Let be the socle of C(X). It is shown that each prime ideal in is essential. For each h ∈ C(X), we prove that every prime ideal (resp. z-ideal) of C(X)/(h) is essential if and only if the set Z(h) of zeros of h contains no isolated points (resp. int Z(h) = ∅). It is proved that , where dim C(X) denotes the Goldie dimension of C(X), and the inequality may be strict. We also give an algebraic characterization of compact spaces with at most a countable number of nonisolated points. For each essential...
We give a description of possible sets of cycle lengths for distance-decreasing maps and isometries of the ring of n-adic integers.
Rings of formal power series with exponents in a cyclically ordered group were defined in [2]. Now, there exists a “valuation” on : for every in and in , we let be the first element of the support of which is greater than or equal to . Structures with such a valuation can be called cyclically valued rings. Others examples of cyclically valued rings are obtained by “twisting” the multiplication in . We prove that a cyclically valued ring is a subring of a power series ring with...
La théorie des valuations née des travaux des géomètres et arithméticiens du XIX siècle, fit une apparition tardive et encore peu connue au XX siècle en algèbre différentielle. Dans cet article, à travers les contributions de nombreux auteurs, nous présentons une synthèse des divers apports de la théorie des valuations à l’étude des équations différentielles. Nous insistons sur le caractère unificateur de la théorie des valuations en illustrant comment elles permettent de mettre en parallèle des...
Cet article a pour objectif de présenter un algorithme permettant de montrer, à l’aide d’un ordinateur, l’euclidianité pour la norme du sous-corps réel maximal du corps cyclotomique où , corps totalement réel de degré et de discriminant , et plus précisément de prouver que . La méthode utilisée permet par ailleurs de prouver que pour , on a également (conjecture de H. Cohn et J. Deutsch). Les résultats relatifs à ce cas sont exposés en fin d’article.