Displaying 581 – 600 of 2826

Showing per page

C(X) vs. C(X) modulo its socle

F. Azarpanah, O. A. S. Karamzadeh, S. Rahmati (2008)

Colloquium Mathematicae

Let C F ( X ) be the socle of C(X). It is shown that each prime ideal in C ( X ) / C F ( X ) is essential. For each h ∈ C(X), we prove that every prime ideal (resp. z-ideal) of C(X)/(h) is essential if and only if the set Z(h) of zeros of h contains no isolated points (resp. int Z(h) = ∅). It is proved that d i m ( C ( X ) / C F ( X ) ) d i m C ( X ) , where dim C(X) denotes the Goldie dimension of C(X), and the inequality may be strict. We also give an algebraic characterization of compact spaces with at most a countable number of nonisolated points. For each essential...

Cyclically valued rings and formal power series

Gérard Leloup (2007)

Annales mathématiques Blaise Pascal

Rings of formal power series k [ [ C ] ] with exponents in a cyclically ordered group C were defined in [2]. Now, there exists a “valuation” on k [ [ C ] ] : for every σ in k [ [ C ] ] and c in C , we let v ( c , σ ) be the first element of the support of σ which is greater than or equal to c . Structures with such a valuation can be called cyclically valued rings. Others examples of cyclically valued rings are obtained by “twisting” the multiplication in k [ [ C ] ] . We prove that a cyclically valued ring is a subring of a power series ring k [ [ C , θ ] ] with...

De l’application des méthodes valuatives en algèbre différentielle

Guillaume Duval (2008)

Annales de la faculté des sciences de Toulouse Mathématiques

La théorie des valuations née des travaux des géomètres et arithméticiens du XIX ê me siècle, fit une apparition tardive et encore peu connue au XX ê me siècle en algèbre différentielle. Dans cet article, à travers les contributions de nombreux auteurs, nous présentons une synthèse des divers apports de la théorie des valuations à l’étude des équations différentielles. Nous insistons sur le caractère unificateur de la théorie des valuations en illustrant comment elles permettent de mettre en parallèle des...

De l’euclidianité de 2 + 2 + 2 et 2 + 2 pour la norme

Jean-Paul Cerri (2000)

Journal de théorie des nombres de Bordeaux

Cet article a pour objectif de présenter un algorithme permettant de montrer, à l’aide d’un ordinateur, l’euclidianité pour la norme du sous-corps réel maximal K du corps cyclotomique ( ζ 32 ) ζ 32 = e i π / 16 , corps totalement réel de degré 8 et de discriminant 2 147 483 648 , et plus précisément de prouver que M ( K ) = 1 2 . La méthode utilisée permet par ailleurs de prouver que pour K = ( ζ 16 + ζ 16 - 1 ) , on a également M ( K ) = 1 2 (conjecture de H. Cohn et J. Deutsch). Les résultats relatifs à ce cas sont exposés en fin d’article.

Currently displaying 581 – 600 of 2826