The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 40

Showing per page

z⁰-Ideals and some special commutative rings

Karim Samei (2006)

Fundamenta Mathematicae

In a commutative ring R, an ideal I consisting entirely of zero divisors is called a torsion ideal, and an ideal is called a z⁰-ideal if I is torsion and for each a ∈ I the intersection of all minimal prime ideals containing a is contained in I. We prove that in large classes of rings, say R, the following results hold: every z-ideal is a z⁰-ideal if and only if every element of R is either a zero divisor or a unit, if and only if every maximal ideal in R (in general, every prime z-ideal) is a z⁰-ideal,...

Zero-Dimensionality and Serre Rings

Karim, D. (2004)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: Primary 13A99; Secondary 13A15, 13B02, 13E05.This paper deals with zero-dimensionality. We investigate the problem of whether a Serre ring R <X> is expressible as a directed union of Artinian subrings.

Zero-divisors of content algebras

Peyman Nasehpour (2010)

Archivum Mathematicum

In this article, we prove that in content extentions minimal primes extend to minimal primes and discuss zero-divisors of a content algebra over a ring who has Property (A) or whose set of zero-divisors is a finite union of prime ideals. We also examine the preservation of diameter of zero-divisor graph under content extensions.

Currently displaying 1 – 20 of 40

Page 1 Next