Ein Beweis des Hilbertschen Basissatzes.
In this paper we compute the Poincaré-Hodge polynomial of a symmetric product of a compact kähler manifold, following the method used by Macdonald, in the topological case, to compute the Poincaré polynomial of a compact polyhedron, and we give some applications, in particular to the case of curves.
We investigate the elasticity of atomic domains of the form ℜ = A + XB[X], where X is an indeterminate, A is a local domain that is not a field, and A ⊂ B is a minimal extension of integral domains. We provide the exact value of the elasticity of ℜ in all cases depending the position of the maximal ideals of B. Then we investigate when such domains are half-factorial domains.