Outer automorphisms of endomorphism algebras
Commutative rings over which no endomorphism algebra has an outer automorphism are studied.
Commutative rings over which no endomorphism algebra has an outer automorphism are studied.
We will recall a recent result about the classification of those polynomial in one variable with rational coefficients whose image over the integer is equal to the image of an integer coefficients polynomial in possibly many variables. These set is polynomially generated over the integers by a family of polynomials whose denominator is and they have a symmetry with respect to a particular axis.We will also give a description of the linear factors of the bivariate separated polynomial over a...
In this paper we study some aspects of the cohomology of groups and we construct a central extension of the symplectic group .
We prove that every commutative differential graded algebra whose cohomology is a simply-connected Poincaré duality algebra is quasi-isomorphic to one whose underlying algebra is simply-connected and satisfies Poincaré duality in the same dimension. This has applications in rational homotopy, giving Poincaré duality at the cochain level, which is of interest in particular in the study of configuration spaces and in string topology.
La méthode de Chabauty elliptique permet de calculer les points rationnels sur une courbe définie sur un corps de nombres lorsque le théorème de Chabauty ne s’applique pas, c’est à dire lorsque le rang de la jacobienne est supérieur au genre de la courbe. Nous exposons cette méthode et nous la généralisons dans de nouveaux cas en écrivant une version explicite du théorème de préparation de Weierstrass en variables. En particulier nous calculons tous les points rationnels d’une courbe de genre...