Principal ideal theorems for holomorphy rings in fields.
In this paper, we use Zorn’s Lemma, multiplicatively closed subsets and saturated closed subsets for the following two topics: (i) The existence of prime submodules in some cases, (ii) The proof that submodules with a certain property satisfy the radical formula. We also give a partial characterization of a submodule of a projective module which satisfies the prime property.
We study 0-dimensional real rank one valuations centered in a regular local ring of dimension n > 2 such that the associated valuation ring can be obtained from the regular ring by a sequence of quadratic transforms. We define two classical invariants associated to the valuation (the refined proximity matrix and the multiplicity sequence) and we show that are equivalent data of the valuation.
The concept of a Prüfer ring is studied in the case of rings with involution such that it coincides with the corresponding notion in the case of commutative rings.