On global Nash functions
The structure of the group of a surface with prescribed singularities is investigated.
Let f: ℝⁿ → ℝ be a C² semialgebraic function and let c be an asymptotic critical value of f. We prove that there exists a smallest rational number such that |x|·|∇f| and are separated at infinity. If c is a regular value and , then f is a locally trivial fibration over c, and the trivialisation is realised by the flow of the gradient field of f.
We prove the o-minimal generalization of the Łojasiewicz inequality , with , in a neighborhood of , where is real analytic at and . We deduce, as in the analytic case, that trajectories of the gradient of a function definable in an o-minimal structure are of uniformly bounded length. We obtain also that the gradient flow gives a retraction onto levels of such functions.
A germ of normal complex analytical surface is called a Hirzebruch-Jung singularity if it is analytically isomorphic to the germ at the 0-dimensional orbit of an affine toric surface. Two such germs are known to be isomorphic if and only if the toric surfaces corresponding to them are equivariantly isomorphic. We extend this result to higher-dimensional Hirzebruch-Jung singularities, which we define to be the germs analytically isomorphic to the germ at the 0-dimensional orbit of an affine toric...
We prove that the number of distinct homotopy types of limits of one-parameter semi-algebraic families of closed and bounded semi-algebraic sets is bounded singly exponentially in the additive complexity of any quantifier-free first order formula defining the family. As an important consequence, we derive that the number of distinct homotopy types of semi-algebraic subsets of defined by a quantifier-free first order formula , where the sum of the additive complexities of the polynomials appearing...