Displaying 281 – 300 of 1144

Showing per page

On hyperplanes and semispaces in max–min convex geometry

Viorel Nitica, Sergeĭ Sergeev (2010)

Kybernetika

The concept of separation by hyperplanes and halfspaces is fundamental for convex geometry and its tropical (max-plus) analogue. However, analogous separation results in max-min convex geometry are based on semispaces. This paper answers the question which semispaces are hyperplanes and when it is possible to “classically” separate by hyperplanes in max-min convex geometry.

On induced actions of algebraic groups

Andrzej Bialynicki-Birula (1993)

Annales de l'institut Fourier

In this paper we study the existence problem for products X × G Y in the categories of quasi-projective and algebraic varieties and also in the category of algebraic spaces.

On invariants of random planar endomorphisms

Teimuraz Aliashvili (2003)

Banach Center Publications

We estimate the expected value of the gradient degree of certain Gaussian random polynomials in two variables and discuss its relations with some other numerical invariants of random polynomials

On irreducible components of a Weierstrass-type variety

Romuald A. Janik (1997)

Annales Polonici Mathematici

We give a characterization of the irreducible components of a Weierstrass-type (W-type) analytic (resp. algebraic, Nash) variety in terms of the orbits of a Galois group associated in a natural way to this variety. Since every irreducible variety of pure dimension is (locally) a component of a W-type variety, this description may be applied to any such variety.

Currently displaying 281 – 300 of 1144