The search session has expired. Please query the service again.
Displaying 281 –
300 of
356
We prove a new lower bound for the height of points on a subvariety of a multiplicative torus, which lie outside the union of torsion subvarieties of . Although lower bounds for the heights of these points where already known (decreasing multi-exponential function of the degree for Scmhidt and Bombieri–Zannier, [Sch], [Bo-Za], and inverse monomial in the degree by the second author of this note and P. Philippon, [Da-Phi]), our method provesup to an the sharpest conjectures that can be formulated....
We discuss the distribution of Mordell-Weil ranks of the family of elliptic curves y² = (x + αf²)(x + βbg²)(x + γh²) where f,g,h are coprime polynomials that parametrize the projective smooth conic a² + b² = c² and α,β,γ are elements from ℚ̅. In our previous papers we discussed certain special cases of this problem and in this article we complete the picture by proving the general results.
We demonstrate that the Łojasiewicz theorem on the division of distributions by analytic functions carries over to the case of division by quasianalytic functions locally definable in an arbitrary polynomially bounded, o-minimal structure which admits smooth cell decomposition. Hence, in particular, the principal ideal generated by a locally definable quasianalytic function is closed in the Fréchet space of smooth functions.
Currently displaying 281 –
300 of
356