Divisorial cohomology vanishing on toric varieties.
We prove that any divisor of a global analytic set has a generic equation, that is, there is an analytic function vanishing on with multiplicity one along each irreducible component of . We also prove that there are functions with arbitrary multiplicities along . The main result states that if is pure dimensional, is locally principal, is not connected and represents the zero class in then the divisor is globally principal.
The aim of this paper is to give an explicit extension of classical elliptic integrals to the Hilbert modular case for ℚ (√5). We study a family of Kummer surfaces corresponding to the Humbert surface of invariant 5 with two complex parameters. Our Kummer surface is given by a double covering of the weighted projective space ℙ(1:1:2) branched along a parabola and a quintic curve. The period mapping for our family is given by double integrals of an algebraic function on chambers coming from an arrangement...
We propose a theory of double Schubert polynomials for the Lie types , , which naturally extends the family of Lascoux and Schützenberger in type . These polynomials satisfy positivity, orthogonality and stability properties, and represent the classes of Schubert varieties and degeneracy loci of vector bundles. When is a maximal Grassmannian element of the Weyl group, can be expressed in terms of Schur-type determinants and Pfaffians, in analogy with the type formula of Kempf and Laksov....