Explicit -descent for elliptic curves in characteristic
Locally analytically, any isolated double point occurs as a double cover of a smooth surface. It can be desingularized explicitly via the canonical resolution, as it is very well-known. In this paper we explicitly compute the fundamental cycle of both the canonical and minimal resolution of a double point singularity and we classify those for which the fundamental cycle differs from the fiber cycle. Moreover we compute the conditions that a double point singularity imposes to pluricanonical systems....
For any abelian variety J over a global field k and an isogeny ϕ: J → J, the Selmer group is a subgroup of the Galois cohomology group , defined in terms of local data. When J is the Jacobian of a cyclic cover of ℙ¹ of prime degree p, the Selmer group has a quotient by a subgroup of order at most p that is isomorphic to the ‘fake Selmer group’, whose definition is more amenable to explicit computations. In this paper we define in the same setting the ‘explicit Selmer group’, which is isomorphic...
Dans cet article nous présentons la théorie des équations différentielles -adiques et ses applications concernant le théorème de finitude de la cohomologie -adique d’une variété affine et le théorème de la monodromie -adique des représentations galoisiennes locales.
We prove the rationality of the Łojasiewicz exponent for p-adic semi-algebraic functions without compactness hypothesis. In the parametric case, we show that the parameter space can be divided into a finite number of semi-algebraic sets on each of which the Łojasiewicz exponent is constant.
We prove the rationality of the Łojasiewicz exponent for semialgebraic functions without compactness hypothesis. In the parametric situation, we show that the parameter space can be divided into a finite number of semialgebraic sets on each of which the Łojasiewicz exponent is constant.
An algebra homomorphism of the locatized affine rings of an algebraic variety is continuous in the Krull topology of the respective local rings. It is not necessarily open or closed in the Krull topology. However, we show that the induced map on the associated analytic local rings is also open and closed in the Krull topology. To do this we prove a conjecture of Tougeron which states that if is an analytic curve on an analytic variety and is a formal power series which is convergent when restricted...
There is a well-known procedure -induction- for extending an action of a subgroup H of a Lie group G on a topological space X to an action of G on an associated space. Induction can also extend a smooth action of a subgroup H of a Lie group G on a manifold M to a smooth action of G on an associated manifold. In this paper elementary methods are used to show that induction also works in the category of (nonsingular) real algebraic varieties and regular or entire maps if G is a compact abelian Lie...
Letg:U→ℝ (U open in ℝn) be an analytic and K-subanalytic (i. e. definable in ℝanK, whereK, the field of exponents, is any subfield ofℝ) function. Then the set of points, denoted Σ, whereg does not admit an analytic extension is K-subanalytic andg can be extended analytically to a neighbourhood of Ū.