On Monomial k-Buchsbaum curves in P3.
Conditions characterizing the membership of the ideal of a subvariety arising from (effective) divisors in a product complex space Y × X are given. For the algebra of relative regular functions on an algebraic variety V, the strict stability is proved, in the case where Y is a normal space, and the Noether stability is established under a weakened condition. As a consequence (for both general and complete intersections) a global Nullstellensatz is derived for divisors in , respectively, . Also...
In this paper we study certain moduli spaces of Barsotti-Tate groups constructed by Rapoport and Zink as local analogues of Shimura varieties. More precisely, given an isogeny class of Barsotti-Tate groups with unramified additional structures, we investigate how the associated (non-basic) moduli spaces compare to the (basic) moduli spaces associated with its isoclinic constituents. This aspect of the geometry of the Rapoport-Zink spaces is closely related to Kottwitz’s prediction that their -adic...
This article confirms a consequence of the non-abelian Iwasawa main conjecture. It is proved that under a technical condition the étale cohomology groups , where is a smooth, projective scheme, are generated by twists of norm compatible units in a tower of number fields associated to . Using the “Bloch-Kato-conjecture” a similar result is proven for motivic cohomology with finite coefficients.
We consider nonsingular polynomial maps F = (P,Q): ℝ² → ℝ² under the following regularity condition at infinity : There does not exist a sequence of complex singular points of F such that the imaginary parts tend to (0,0), the real parts tend to ∞ and . It is shown that F is a global diffeomorphism of ℝ² if it satisfies Condition and if, in addition, the restriction of F to every real level set is proper for values of |c| large enough.