Displaying 341 – 360 of 915

Showing per page

The integral points on elliptic curves y 2 = x 3 + ( 36 n 2 - 9 ) x - 2 ( 36 n 2 - 5 )

Hai Yang, Ruiqin Fu (2013)

Czechoslovak Mathematical Journal

Let n be a positive odd integer. In this paper, combining some properties of quadratic and quartic diophantine equations with elementary analysis, we prove that if n > 1 and both 6 n 2 - 1 and 12 n 2 + 1 are odd primes, then the general elliptic curve y 2 = x 3 + ( 36 n 2 - 9 ) x - 2 ( 36 n 2 - 5 ) has only the integral point ( x , y ) = ( 2 , 0 ) . By this result we can get that the above elliptic curve has only the trivial integral point for n = 3 , 13 , 17 etc. Thus it can be seen that the elliptic curve y 2 = x 3 + 27 x - 62 really is an unusual elliptic curve which has large integral points.

The irregularity of ruled surfaces in three dimensional projective space.

Luis Giraldo, Ignacio Sols (1998)

Collectanea Mathematica

Let S be a ruled surface in P3 with no multiple generators. Let d and q be nonnegative integers. In this paper we determine which pairs (d,q) correspond to the degree and irregularity of a ruled surface, by considering these surfaces as curves in a smooth quadric hypersurface in P5.

The Jacobian Conjecture for symmetric Drużkowski mappings

Michiel de Bondt, Arno van den Essen (2005)

Annales Polonici Mathematici

Let k be an algebraically closed field of characteristic zero and F : = x + ( A x ) * d : k k a Drużkowski mapping of degree ≥ 2 with det JF = 1. We classify all such mappings whose Jacobian matrix JF is symmetric. It follows that the Jacobian Conjecture holds for these mappings.

The Jacobian Conjecture in case of "non-negative coefficients"

Ludwik M. Drużkowski (1997)

Annales Polonici Mathematici

It is known that it is sufficient to consider in the Jacobian Conjecture only polynomial mappings of the form F ( x , . . . , x n ) = x - H ( x ) : = ( x - H ( x , . . . , x n ) , . . . , x n - H n ( x , . . . , x n ) ) , where H j are homogeneous polynomials of degree 3 with real coefficients (or H j = 0 ), j = 1,...,n and H’(x) is a nilpotent matrix for each x = ( x , . . . , x n ) n . We give another proof of Yu’s theorem that in the case of non-negative coefficients of H the mapping F is a polynomial automorphism, and we moreover prove that in that case d e g F - 1 ( d e g F ) i n d F - 1 , where i n d F : = m a x i n d H ' ( x ) : x n . Note that the above inequality is not true when the coefficients of...

The Jacobian Conjecture: symmetric reduction and solution in the symmetric cubic linear case

Ludwik M. Drużkowski (2005)

Annales Polonici Mathematici

Let 𝕂 denote ℝ or ℂ, n > 1. The Jacobian Conjecture can be formulated as follows: If F:𝕂ⁿ → 𝕂ⁿ is a polynomial map with a constant nonzero jacobian, then F is a polynomial automorphism. Although the Jacobian Conjecture is still unsolved even in the case n = 2, it is convenient to consider the so-called Generalized Jacobian Conjecture (for short (GJC)): the Jacobian Conjecture holds for every n>1. We present the reduction of (GJC) to the case of F of degree 3 and of symmetric homogeneous...

The jacobian map, the jacobian group and the group of automorphisms of the Grassmann algebra

Vladimir V. Bavula (2010)

Bulletin de la Société Mathématique de France

There are nontrivial dualities and parallels between polynomial algebras and the Grassmann algebras (e.g., the Grassmann algebras are dual of polynomial algebras as quadratic algebras). This paper is an attempt to look at the Grassmann algebras at the angle of the Jacobian conjecture for polynomial algebras (which is the question/conjecture about the Jacobian set– the set of all algebra endomorphisms of a polynomial algebra with the Jacobian 1 – the Jacobian conjecture claims that the Jacobian...

The jump of the Milnor number in the X 9 singularity class

Szymon Brzostowski, Tadeusz Krasiński (2014)

Open Mathematics

The jump of the Milnor number of an isolated singularity f 0 is the minimal non-zero difference between the Milnor numbers of f 0 and one of its deformations (f s). We prove that for the singularities in the X 9 singularity class their jumps are equal to 2.

Currently displaying 341 – 360 of 915