The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 21 – 40 of 186

Showing per page

Nesting maps of Grassmannians

Corrado De Concini, Zinovy Reichstein (2004)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Let F be a field and G r i , F n be the Grassmannian of i -dimensional linear subspaces of F n . A map f : G r i , F n G r j , F n is called nesting if l f l for every l G r i , F n . Glover, Homer and Stong showed that there are no continuous nesting maps G r i , C n G r j , C n except for a few obvious ones. We prove a similar result for algebraic nesting maps G r i , F n G r j , F n , where F is an algebraically closed field of arbitrary characteristic. For i = 1 this yields a description of the algebraic sub-bundles of the tangent bundle to the projective space P F n .

New examples of modular rigid Calabi-Yau threefolds.

Matthias Schütt (2004)

Collectanea Mathematica

The aim of this article is to present five new examples of modular rigid Calabi-Yau threefolds by giving explicit correspondences to newforms of weight 4 and levels 10, 17, 21 and 73.

Currently displaying 21 – 40 of 186