The search session has expired. Please query the service again.
Displaying 561 –
580 of
921
Let be a field. We compute the set ofnaivehomotopy classes of pointed -scheme endomorphisms of the projective line . Our result compares well with Morel’s computation in [11] of thegroup of -homotopy classes of pointed endomorphisms of : the set admits an a priori monoid structure such that the canonical map is a group completion.
We prove an algebraicity criterion for leaves of algebraic foliations defined over number fields. Namely, consider a number field embedded in , a smooth algebraic variety over , equipped with a rational point , and an algebraic subbundle of the its tangent bundle , defined over . Assume moreover that the vector bundle is involutive, i.e., closed under Lie bracket. Then it defines an holomorphic foliation of the analytic manifold , and one may consider its leaf through . We prove...
We study algebraic loop groups and affine Grassmannians in positive characteristic.
The main results are normality of Schubert-varieties, the construction of line-bundles on the affine Grassmannian, and the proof that they induce line-bundles on the moduli-stack of torsors.
Currently displaying 561 –
580 of
921