The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 621 –
640 of
640
On construit un transport transverse aux fibres d’une fonction multivaluée de type ( complexes), à l’origine de . Ce transport est unique à isotopie près. On en déduit l’existence de voisinages réguliers dans lesquels les fibres sont toutes difféomorphes (voire dans un cas quasi-homogène, analytiquement difféomorphes). On obtient également une généralisation de la notion de monodromie. On calcule enfin l’homologie évanescente de la fibre-type, en précisant le gradué qui lui est associé.
Every compact smooth manifold is diffeomorphic to a nonsingular real algebraic set, called an algebraic model of . We study modulo 2 homology classes represented by algebraic subsets of , as runs through the class of all algebraic models of . Our main result concerns the case where is a spin manifold.
We describe a series of Calabi-Yau manifolds which are cyclic coverings of a Fano 3-fold branched along a smooth divisor. For all the examples we compute the Euler characteristic and the Hodge numbers. All examples have small Picard number .
Currently displaying 621 –
640 of
640