Displaying 901 – 920 of 1144

Showing per page

On the number of compatibly Frobenius split subvarieties, prime F -ideals, and log canonical centers

Karl Schwede, Kevin Tucker (2010)

Annales de l’institut Fourier

Let X be a projective Frobenius split variety with a fixed Frobenius splitting θ . In this paper we give a sharp uniform bound on the number of subvarieties of X which are compatibly Frobenius split with θ . Similarly, we give a bound on the number of prime F -ideals of an F -finite F -pure local ring. Finally, we also give a bound on the number of log canonical centers of a log canonical pair. This final variant extends a special case of a result of Helmke.

On the number of elliptic curves with CM cover large algebraic fields

Gerhard Frey, Moshe Jarden (2005)

Annales de l'institut Fourier

Elliptic curves with CM unveil a new phenomenon in the theory of large algebraic fields. Rather than drawing a line between 0 and 1 or 1 and 2 they give an example where the line goes beween 2 and 3 and another one where the line goes between 3 and 4 .

On the order three Brauer classes for cubic surfaces

Andreas-Stephan Elsenhans, Jörg Jahnel (2012)

Open Mathematics

We describe a method to compute the Brauer-Manin obstruction for smooth cubic surfaces over ℚ such that Br(S)/Br(ℚ) is a 3-group. Our approach is to associate a Brauer class with every ordered triplet of Galois invariant pairs of Steiner trihedra. We show that all order three Brauer classes may be obtained in this way. To show the effect of the obstruction, we give explicit examples.

On the ordinarity of the maximal real subfield of cyclotomic function fields

Daisuke Shiomi (2014)

Acta Arithmetica

The aim of this paper is to clarify the ordinarity of cyclotomic function fields. In the previous work [J. Number Theory 133 (2013)], the author determined all monic irreducible polynomials m such that the maximal real subfield of the mth cyclotomic function field is ordinary. In this paper, we extend this result to the general case.

On the osculatory behaviour of higher dimensional projective varieties.

Edoardo Ballico, Claudio Fontanari (2004)

Collectanea Mathematica

We explore the geometry of the osculating spaces to projective verieties of arbitrary dimension. In particular, we classify varieties having very degenerate higher order osculating spaces and we determine mild conditions for the existence of inflectionary points.

Currently displaying 901 – 920 of 1144