On the Normal Bundle to Abelian Surfaces Embedded in ...4 ( C ) .
Let be a projective Frobenius split variety with a fixed Frobenius splitting . In this paper we give a sharp uniform bound on the number of subvarieties of which are compatibly Frobenius split with . Similarly, we give a bound on the number of prime -ideals of an -finite -pure local ring. Finally, we also give a bound on the number of log canonical centers of a log canonical pair. This final variant extends a special case of a result of Helmke.
Elliptic curves with CM unveil a new phenomenon in the theory of large algebraic fields. Rather than drawing a line between and or and they give an example where the line goes beween and and another one where the line goes between and .
We give upper and lower bounds for the number of points on abelian varieties over finite fields, and lower bounds specific to Jacobian varieties. We also determine exact formulas for the maximum and minimum number of points on Jacobian surfaces.
We describe a method to compute the Brauer-Manin obstruction for smooth cubic surfaces over ℚ such that Br(S)/Br(ℚ) is a 3-group. Our approach is to associate a Brauer class with every ordered triplet of Galois invariant pairs of Steiner trihedra. We show that all order three Brauer classes may be obtained in this way. To show the effect of the obstruction, we give explicit examples.
The aim of this paper is to clarify the ordinarity of cyclotomic function fields. In the previous work [J. Number Theory 133 (2013)], the author determined all monic irreducible polynomials m such that the maximal real subfield of the mth cyclotomic function field is ordinary. In this paper, we extend this result to the general case.
We explore the geometry of the osculating spaces to projective verieties of arbitrary dimension. In particular, we classify varieties having very degenerate higher order osculating spaces and we determine mild conditions for the existence of inflectionary points.