On the Severi problem.
We introduce a new fundamental group scheme for varieties defined over an algebraically closed (or just perfect) field of positive characteristic and we use it to study generalization of C. Simpson’s results to positive characteristic. We also study the properties of this group and we prove Lefschetz type theorems.
Sia una curva dello spazio di grado contenuta in una superficie di grado e non in una di grado . Se è integra, allora ; questo limite superiore, raggiunto in alcuni casi (cfr. [5]), non vale però per curve arbitrarie (cfr. [?, 3 (iii)]). Ogni curva dello spazio (anche non ridotta o riducibile) può essere ottenuta come schema degli zero di una sezione non nulla di un opportuno fascio riflessivo di rango 2. Mediante i fasci riflessivi, siamo in grado di estendere alle curve riducibili...
We introduce a notion of generic real algebraic variety and we study the space of morphisms into these varieties. Let be a real algebraic variety. We say that is generic if there exist a finite family of irreducible real algebraic curves with genus and a biregular embedding of into the product variety . A bijective map from a real algebraic variety to is called weak change of the algebraic structure of if it is regular and its inverse is a Nash map. Generic real algebraic varieties...
In this Note, we announce several results concerning basic properties of the spaces of morphisms between real algebraic varieties. Our results show a surprising intrinsic rigidity of Real Algebraic Geometry and illustrate the great distance which, in some sense, exists between this geometry and Real Nash one. Let us give an example of this rigidity. An affine real algebraic variety is rigid if, for each affine irreducible real algebraic variety , the set of all nonconstant regular morphisms from...
Given a real n×n matrix A, we make some conjectures and prove partial results about the range of the function that maps the n-tuple x into the entrywise kth power of the n-tuple Ax. This is of interest in the study of the Jacobian Conjecture.