The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 121 –
140 of
388
Complex projective elliptic surfaces endowed with a numerically effective line bundle of arithmetic genus two are studied and partially classified. A key role is played by elliptic quasi-bundles, where some ideas developed by Serrano in order to study ample line bundles apply to this more general situation.
Given a compact affine nonsingular real algebraic variety X and a nonsingular subvariety Z C X belonging to a large class of subvarieties, we show how to embed X in a suitable Grassmannian so that Z becomes the transverse intersection of the zeros of a section of the tautological bundle on the Grassmannian.
We consider the family of polynomials in of the form . Two such polynomials and are equivalent if there is an automorphism of such that . We give a complete classification of the equivalence classes of these polynomials in the algebraic and analytic category. As a consequence, we find the following results. There are explicit examples of inequivalent polynomials and such that the zero set of is isomorphic to the zero set of for all . There exist polynomials which are algebraically...
Currently displaying 121 –
140 of
388