The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Applying the “exact WKB method” (cf. Delabaere-Dillinger-Pham) to the stationary one-dimensional Schrödinger equation with polynomial potential, one is led to a multivalued complex action-integral function. This function is a (hyper)elliptic integral; the sheet structure of its Riemann surface above the plane of its values has interesting properties: the projection of its branch-points is in general a dense subset of the plane, and there is a group of symmetries acting on the surface. The distribution...
Currently displaying 1 –
10 of
10