The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 2 of 2

Showing per page

Galois covers between K 3 surfaces

Gang Xiao (1996)

Annales de l'institut Fourier

We give a classification of finite group actions on a K 3 surface giving rise to K 3 quotients, from the point of view of their fixed points. It is shown that except two cases, each such group gives rise to a unique type of fixed point set.

Green's generic syzygy conjecture for curves of even genus lying on a K3 surface

Claire Voisin (2002)

Journal of the European Mathematical Society

We consider the generic Green conjecture on syzygies of a canonical curve, and particularly the following reformulation thereof: For a smooth projective curve C of genus g in characteristic 0, the condition Cliff C > l is equivalent to the fact that K g - l ' - 2 , 1 ( C , K C ) = 0 , l ' l . We propose a new approach, which allows up to prove this result for generic curves C of genus g ( C ) and gonality gon(C) in the range g ( C ) 3 + 1 gon(C) g ( C ) 2 + 1 .

Currently displaying 1 – 2 of 2

Page 1