The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 341 –
360 of
471
This paper presents several theorems on the rectilinearization of functions definable by a convergent Weierstrass system, as well as their applications to decomposition into special cubes and quantifier elimination.
Let R be a real closed field with a real valuation v. A ℤ-valued semialgebraic function on Rⁿ is called algebraic if it can be written as the sign of a symmetric bilinear form over R[X₁,. .., Xₙ]. We show that the reduction of such a function with respect to v is again algebraic on the residue field. This implies a corresponding result for limits of algebraic functions in definable families.
Implementations of known reductions of the Strong Real Jacobian Conjecture (SRJC), to the case of an identity map plus cubic homogeneous or cubic linear terms, and to the case of gradient maps, are shown to preserve significant algebraic and geometric properties of the maps involved. That permits the separate formulation and reduction, though not so far the solution, of the SRJC for classes of nonsingular polynomial endomorphisms of real n-space that exclude the Pinchuk counterexamples to the SRJC,...
Existence of loops for non-injective regular analytic transformations of the real plane is shown. As an application, a criterion for injectivity of a regular analytic transformation of in terms of the Jacobian and the first and second order partial derivatives is obtained. This criterion is new even in the special case of polynomial transformations.
Consider a compact subset of real -space defined by polynomial inequalities . For a polynomial non-negative on , natural sufficient conditions are given (in terms of first and second derivatives at the zeros of in ) for to have a presentation of the form , a sum of squares of polynomials. The conditions are much less restrictive than the conditions given by Scheiderer in [11, Cor. 2.6]. The proof uses Scheiderer’s main theorem in [11] as well as arguments from quadratic form theory...
This paper studies the representation of a non-negative polynomial f on a non-compact semi-algebraic set K modulo its KKT (Karush-Kuhn-Tucker) ideal. Under the assumption that f satisfies the boundary Hessian conditions (BHC) at each zero of f in K, we show that f can be represented as a sum of squares (SOS) of real polynomials modulo its KKT ideal if f ≥ 0 on K.
We study matrix calculations such as diagonalization of quadratic forms under the aspect of additive complexity and relate these complexities to the complexity of matrix multiplication. While in Bürgisser et al. (1991) for multiplicative complexity the customary thick path existence argument was sufficient, here for additive complexity we need the more delicate finess of the real spectrum (cf. Bochnak et al. (1987), Becker (1986), Knebusch and Scheiderer (1989)) to obtain a complexity relativization....
Given a closed (not necessarly compact) semi-algebraic set in , we construct a non-negative semi-algebraic function such that and such that for sufficiently small, the inclusion of in is a retraction. As a corollary, we obtain several formulas for the Euler characteristic of .
Currently displaying 341 –
360 of
471