Generalized matrix versions of the Cauch-Schwarz and Kantorovich inequalities.
In this paper, we discuss the scheduling of a wide class of transportation systems. In particular, we derive an algorithm to generate a regular schedule by using max-plus algebra. Inputs of this algorithm are a graph representing the road network of public transportation systems and the number of public vehicles in each route. The graph has to be strongly connected, which means there is a path from any vertex to every vertex. Let us remark that the algorithm is general in the sense that we can allocate...
We introduce a new family of generalized Schröder matrices from the Riordan arrays which are obtained by counting of the weighted lattice paths with steps , , , and and not going above the line . We also consider the half of the generalized Delannoy matrix which is derived from the enumeration of these lattice paths with no restrictions. Correlations between these matrices are considered. By way of illustration, we give several examples of Riordan arrays of combinatorial interest. In addition,...
Generalizations of the classical Schwarzian derivative of complex analysis have been proposed by Osgood and Stowe [12, 13], Carne [5], and Ahlfors [3]. We present another generalization of the Schwarzian derivative over vector spaces.
Let be a unitary space. For an arbitrary subgroup of the full symmetric group and an arbitrary irreducible unitary representation of , we study the generalized symmetry class of tensors over associated with and . Some important properties of this vector space are investigated.
Using the idea of the generating function of a matrix in an extended sense we establish a Bezoutian type formula for a matrix satisfying an intertwining relation of the form . In the particular case of classical generating functions this formula gives a simple proof of Lander’s theorem on the inverse of a Hankel matrix.
This paper presents an enumeration algorithm to generate all magic squares of order 5 based on the ideas of basic form (Schroeppel [7]) and generating vector which is extension of Frénicle Quads (Ollerenshaw and Bondi [6]). The results lead us to extend Frénicle-Amela patterns from the case of order 4 to the case of order 5, which we refer to Frénicle-Amela-Like patterns. We show that these interesting Frénicle-Amela-Like patterns appear simultaneously. The number of these patterns is also calculated....
The purpose of the Part I of this paper is to develop the geometry of Gram's determinants in Hilbert space. In Parts II and III a generalization is given of the Pythagorean theorem and triangular inequality for finite vector families.