New trace bounds for the product of two matrices and their applications in the algebraic Riccati equation.
Soit un nombre de Pisot ; nous montrons que pour tout entier assez grand il existe une matrice carrée à coefficients positifs ou nuls dont l’ordre est égal au degré de et dont est valeur propre.Soit le -développement de ; si est un nombre de Pisot, alors la suite est périodique après un certain rang (pour , ) et le polynômeest appelé polynôme de Parry. Nous montrons qu’il existe un ensemble relativement dense d’entiers tels que le polynôme minimal de est égal à son polynôme...
Let , and be fixed complex numbers. Let be the Toeplitz matrix all of whose entries above the diagonal are , all of whose entries below the diagonal are , and all of whose entries on the diagonal are . For , each principal minor of has the same value. We find explicit and recursive formulae for the principal minors and the characteristic polynomial of . We also show that all complex polynomials in are Toeplitz matrices. In particular, the inverse of is a Toeplitz matrix when...
A new formula is established for the asymptotic expansion of a matrix integral with values in a finite-dimensional von Neumann algebra in terms of graphs on surfaces which are orientable or non-orientable.
Four applications are outlined of pseudospectra of highly nonnormal linear operators.
We show using non-intersecting paths, that a random rhombus tiling of a hexagon, or a boxed planar partition, is described by a determinantal point process given by an extended Hahn kernel.