One-sided complements and solutions of the equation in semirings.
We introduce the right (left) Gorenstein subcategory relative to an additive subcategory of an abelian category , and prove that the right Gorenstein subcategory is closed under extensions, kernels of epimorphisms, direct summands and finite direct sums. When is self-orthogonal, we give a characterization for objects in , and prove that any object in with finite -projective dimension is isomorphic to a kernel (or a cokernel) of a morphism from an object in with finite -projective dimension...
In this article we introduce and study the concept of α-almost Artinian modules. We show that each α-almost Artinian module M is almost Artinian (i.e., every proper homomorphic image of M is Artinian), where α ∈ {0,1}. Using this concept we extend some of the basic results of almost Artinian modules to α-almost Artinian modules. Moreover we introduce and study the concept of α-Krull modules. We observe that if M is an α-Krull module then the Krull dimension of M is either α or α + 1.
Given an object in a category, we study its orbit algebra with respect to an endofunctor. We show that if the object is periodic, then its orbit algebra modulo nilpotence is a polynomial ring in one variable. This specializes to a result on Ext-algebras of periodic modules over Gorenstein algebras. We also obtain a criterion for an algebra to be of wild representation type.
In this note we show that there are a lot of orbit algebras that are invariant under stable equivalences of Morita type between self-injective algebras. There are also indicated some links between Auslander-Reiten periodicity of bimodules and noetherianity of their orbit algebras.
The notions of a preordering and an ordering of a ring R with involution are investigated. An algebraic condition for the existence of an ordering of R is given. Also, a condition for enlarging an ordering of R to an overring is given. As for the case of a field, any preordering of R can be extended to some ordering. Finally, we investigate the class of archimedean ordered rings with involution.