Displaying 2641 – 2660 of 3997

Showing per page

Selfinjective algebras of strictly canonical type

Marta Kwiecień, Andrzej Skowroński (2009)

Colloquium Mathematicae

We develop the representation theory of selfinjective algebras of strictly canonical type and prove that their Auslander-Reiten quivers admit quasi-tubes maximally saturated by simple and projective modules.

Selfinjective algebras of tubular type

Jerzy Białkowski, Andrzej Skowroński (2002)

Colloquium Mathematicae

We classify all tame self/injective algebras having simply connected Galois coverings and the stable Auslander-Reiten quivers consisting of stable tubes. Moreover, the classification of nondomestic polynomial growth standard self/injective algebras is completed.

Selfinjective algebras of wild canonical type

Helmut Lenzing, Andrzej Skowroński (2003)

Colloquium Mathematicae

We develop the representation theory of selfinjective algebras which admit Galois coverings by the repetitive algebras of algebras whose derived category of bounded complexes of finite-dimensional modules is equivalent to the derived category of coherent sheaves on a weighted projective line with virtual genus greater than one.

Self-injective Von Neumann regular subrings and a theorem of Pere Menal.

Carl Faith (1992)

Publicacions Matemàtiques

This paper owes its origins to Pere Menal and his work on Von Neumann Regular (= VNR) rings, especially his work listed in the bibliography on when the tensor product K = A ⊗K B of two algebras over a field k are right self-injective (= SI) or VNR. Pere showed that then A and B both enjoy the same property, SI or VNR, and furthermore that either A and B are algebraic algebras over k (see [M]). This is connected with a lemma in the proof of the Hilbert Nullstellensatz, namely a finite ring extension...

Semicommutativity of the rings relative to prime radical

Handan Kose, Burcu Ungor (2015)

Commentationes Mathematicae Universitatis Carolinae

In this paper, we introduce a new kind of rings that behave like semicommutative rings, but satisfy yet more known results. This kind of rings is called P -semicommutative. We prove that a ring R is P -semicommutative if and only if R [ x ] is P -semicommutative if and only if R [ x , x - 1 ] is P -semicommutative. Also, if R [ [ x ] ] is P -semicommutative, then R is P -semicommutative. The converse holds provided that P ( R ) is nilpotent and R is power serieswise Armendariz. For each positive integer n , R is P -semicommutative if and...

Semifields and a theorem of Abhyankar

Vítězslav Kala (2017)

Commentationes Mathematicae Universitatis Carolinae

Abhyankar proved that every field of finite transcendence degree over or over a finite field is a homomorphic image of a subring of the ring of polynomials [ T 1 , , T n ] (for some n depending on the field). We conjecture that his result cannot be substantially strengthened and show that our conjecture implies a well-known conjecture on the additive idempotence of semifields that are finitely generated as semirings.

Currently displaying 2641 – 2660 of 3997