Displaying 2681 – 2700 of 3997

Showing per page

Separable K-linear categories

Andrei Chiteș, Costel Chiteș (2010)

Open Mathematics

We define and investigate separable K-linear categories. We show that such a category C is locally finite and that every left C-module is projective. We apply our main results to characterize separable linear categories that are spanned by groupoids or delta categories.

Serre functors for Lie algebras and superalgebras

Volodymyr Mazorchuk, Vanessa Miemietz (2012)

Annales de l’institut Fourier

We propose a new realization, using Harish-Chandra bimodules, of the Serre functor for the BGG category 𝒪 associated to a semi-simple complex finite dimensional Lie algebra. We further show that our realization carries over to classical Lie superalgebras in many cases. Along the way we prove that category 𝒪 and its parabolic generalizations for classical Lie superalgebras are categories with full projective functors. As an application we prove that in many cases the endomorphism algebra of the basic...

Serre Theorem for involutory Hopf algebras

Gigel Militaru (2010)

Open Mathematics

We call a monoidal category C a Serre category if for any C, D ∈ C such that C ⊗ D is semisimple, C and D are semisimple objects in C. Let H be an involutory Hopf algebra, M, N two H-(co)modules such that M ⊗ N is (co)semisimple as a H-(co)module. If N (resp. M) is a finitely generated projective k-module with invertible Hattory-Stallings rank in k then M (resp. N) is (co)semisimple as a H-(co)module. In particular, the full subcategory of all finite dimensional modules, comodules or Yetter-Drinfel’d...

Shuffle bialgebras

María Ronco (2011)

Annales de l’institut Fourier

The goal of our work is to study the spaces of primitive elements of some combinatorial Hopf algebras, whose underlying vector spaces admit linear basis labelled by subsets of the set of maps between finite sets. In order to deal with these objects we introduce the notion of shuffle algebras, which are coloured algebras where composition is not always defined. We define bialgebras in this framework and compute the subpaces of primitive elements associated to them. These spaces of primitive elements...

Currently displaying 2681 – 2700 of 3997