Simple Skew Polynomial Rings
This short note is a continuation of and and its purpose is to show that every simple zeropotent paramedial groupoid containing at least three elements is strongly balanced in the sense of .
Let R=k(Q,I) be a finite-dimensional algebra over a field k determined by a bound quiver (Q,I). We show that if R is a simply connected right multipeak algebra which is chord-free and -free in the sense defined below then R has the separation property and there exists a preprojective component of the Auslander-Reiten quiver of the category prin(R) of prinjective R-modules. As a consequence we get in 4.6 a criterion for finite representation type of prin(R) in terms of the prinjective Tits quadratic...
Assume that K is an arbitrary field. Let (I,⪯) be a poset of finite prinjective type and let KI be the incidence K-algebra of I. A classification of all sincere posets of finite prinjective type with three maximal elements is given in Theorem 2.1. A complete list of such posets consisting of 90 diagrams is presented in Tables 2.2. Moreover, given any sincere poset I of finite prinjective type with three maximal elements, a complete set of pairwise non-isomorphic sincere indecomposable prinjective...
Let K be an algebraically closed field. Let (Q,Sp,I) be a skewed-gentle triple, and let and be the corresponding skewed-gentle pair and the associated gentle pair, respectively. We prove that the skewed-gentle algebra is singularity equivalent to KQ/⟨I⟩. Moreover, we use (Q,Sp,I) to describe the singularity category of . As a corollary, we find that if and only if if and only if .
We examine when the nil and prime radicals of an algebra are stable under q-skew σ-derivations. We provide an example which shows that even if q is not a root of 1 or if δ and σ commute in characteristic 0, then the nil and prime radicals need not be δ-stable. However, when certain finiteness conditions are placed on δ or σ, then the nil and prime radicals are δ-stable.
A ring is called a right -ring if its socle, , is projective. Nicholson and Watters have shown that if is a right -ring, then so are the polynomial ring and power series ring . In this paper, it is proved that, under suitable conditions, if has a (flat) projective socle, then so does the skew inverse power series ring and the skew polynomial ring , where is an associative ring equipped with an automorphism and an -derivation . Our results extend and unify many existing results....