Shoikhet's conjecture and Duflo isomorphism on (co)invariants.
Let R=k(Q,I) be a finite-dimensional algebra over a field k determined by a bound quiver (Q,I). We show that if R is a simply connected right multipeak algebra which is chord-free and -free in the sense defined below then R has the separation property and there exists a preprojective component of the Auslander-Reiten quiver of the category prin(R) of prinjective R-modules. As a consequence we get in 4.6 a criterion for finite representation type of prin(R) in terms of the prinjective Tits quadratic...
Let K be an algebraically closed field. Let (Q,Sp,I) be a skewed-gentle triple, and let and be the corresponding skewed-gentle pair and the associated gentle pair, respectively. We prove that the skewed-gentle algebra is singularity equivalent to KQ/⟨I⟩. Moreover, we use (Q,Sp,I) to describe the singularity category of . As a corollary, we find that if and only if if and only if .
In this paper, we mainly derive the general solutions of two systems of minus partial ordering equations over von Neumann regular rings. Meanwhile, some special cases are correspondingly presented. As applications, we give some necessary and sufficient conditions for the existence of solutions. It can be seen that some known results can be regarded as the special cases of this paper.
Let M be a left module over a ring R. M is called a Zelmanowitz-regular module if for each x ∈ M there exists a homomorphism F: M → R such that f(x) = x. Let Q be a left R-module and h: Q → M a homomorphism. We call h locally split if for every x ∈ M there exists a homomorphism g: M → Q such that h(g(x)) = x. M is called locally projective if every epimorphism onto M is locally split. We prove that the following conditions are equivalent:(1) M is Zelmanowitz-regular.(2) every homomorphism into M...
We find some relations between module biprojectivity and module biflatness of Banach algebras and and their projective tensor product . For some semigroups , we study module biprojectivity and module biflatness of semigroup algebras .
Let A be a special biserial algebra over an algebraically closed field. We show that the first Hohchshild cohomology group of A with coefficients in the bimodule A vanishes if and only if A is representation-finite and simply connected (in the sense of Bongartz and Gabriel), if and only if the Euler characteristic of Q equals the number of indecomposable non-uniserial projective-injective A-modules (up to isomorphism). Moreover, if this is the case, then all the higher Hochschild cohomology groups...