The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 81 –
100 of
677
Here we introduce the k-bi-ideals in semirings and the intra k-regular semirings. An intra k-regular semiring S is a semiring whose additive reduct is a semilattice and for each a ∈ S there exists x ∈ S such that a + xa²x = xa²x. Also it is a semiring in which every k-ideal is semiprime. Our aim in this article is to characterize both the k-regular semirings and intra k-regular semirings using of k-bi-ideals.
By analogy with the projective, injective and flat modules, in this paper we study some properties of -Gorenstein projective, injective and flat modules and discuss some connections between -Gorenstein injective and -Gorenstein flat modules. We also investigate some connections between -Gorenstein projective, injective and flat modules of change of rings.
Let G be a group, R a G-graded ring and X a right G-set. We study functors between categories of modules graded by G-sets, continuing the work of [M]. As an application we obtain generalizations of Cohen-Montgomery Duality Theorems by categorical methods. Then we study when some functors introduced in [M] (which generalize some functors ocurring in [D1], [D2] and [NRV]) are separable. Finally we obtain an application to the study of the weak dimension of a group graded ring.
We develop a diagrammatic categorification of the polynomial ring ℤ[x]. Our categorification satisfies a version of Bernstein-Gelfand-Gelfand reciprocity property with the indecomposable projective modules corresponding to xⁿ and standard modules to (x-1)ⁿ in the Grothendieck ring.
We determine when an element in a noncommutative ring is the sum of an idempotent and a radical element that commute. We prove that a matrix over a projective-free ring is strongly -clean if and only if , or , or is similar to , where , , and the equation has a root in and a root in . We further prove that is strongly -clean if be optimally -clean.
A ring is (weakly) nil clean provided that every element in is the sum of a (weak) idempotent and a nilpotent. We characterize nil and weakly nil matrix rings over abelian rings. Let be abelian, and let . We prove that is nil clean if and only if is Boolean and is nil. Furthermore, we prove that is weakly nil clean if and only if is periodic; is , or where is a Boolean ring, and that is weakly nil clean if and only if is nil clean for all .
A matrix is -clean provided there exists an idempotent such that and . We get a general criterion of -cleanness for the matrix . Under the -stable range condition, it is shown that is -clean iff . As an application, we prove that the -cleanness and unit-regularity for such matrix over a Dedekind domain coincide for all . The analogous for property is also obtained.
Currently displaying 81 –
100 of
677