The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The aim of this note is to give an affirmative answer to a problem raised in [9] by J. Nehring and A. Skowroński, concerning the number of nonstable ℙ₁(K)-families of quasi-tubes in the Auslander-Reiten quivers of the trivial extensions of tubular algebras over algebraically closed fields K.
We use modules of finite length to compare various generalizations of the classical tilting and cotilting modules introduced by Brenner and Butler [BrBu].
We show that any block of a group algebra of some finite group which is of wild representation type has many families of stable tubes.
Assume that S is a commutative complete discrete valuation domain of characteristic p, S* is the unit group of S and is a finite group, where is a p-group and B is a p’-group. Denote by the twisted group algebra of G over S with a 2-cocycle λ ∈ Z²(G,S*). We give necessary and sufficient conditions for to be of OTP representation type, in the sense that every indecomposable -module is isomorphic to the outer tensor product V W of an indecomposable -module V and an irreducible -module...
Let be the ring of p-adic integers, the unit group of and a finite group, where is a p-group and B is a p’-group. Denote by the twisted group algebra of G over with a 2-cocycle . We give necessary and sufficient conditions for to be of OTP representation type, in the sense that every indecomposable -module is isomorphic to the outer tensor product V W of an indecomposable -module V and an irreducible -module W.
Let k be a field of characteristic different from 2. We consider two important tame non-polynomial growth algebras: the incidence k-algebra of the garland 𝒢₃ of length 3 and the incidence k-algebra of the enlargement of the Nazarova-Zavadskij poset 𝒩 𝓩 by a greatest element. We show that if Λ is one of these algebras, then there exists a special family of pointed Λ-modules, called an independent pair of dense chains of pointed modules. Hence, by a result of Ziegler, Λ admits a super-decomposable...
We give necessary and sufficient conditions for a wing of an Auslander-Reiten quiver of a selfinjective algebra to be the wing of the radical of an indecomposable projective module. Moreover, a characterization of indecomposable Nakayama algebras of Loewy length ≥ 3 is obtained.
We classify one-directed indecomposable pure injective modules over finite-dimensional string algebras.
Given an object in a category, we study its orbit algebra with respect to an endofunctor. We show that if the object is periodic, then its orbit algebra modulo nilpotence is a polynomial ring in one variable. This specializes to a result on Ext-algebras of periodic modules over Gorenstein algebras. We also obtain a criterion for an algebra to be of wild representation type.
In this note we show that there are a lot of orbit algebras that are invariant under stable equivalences of Morita type between self-injective algebras. There are also indicated some links between Auslander-Reiten periodicity of bimodules and noetherianity of their orbit algebras.
Currently displaying 81 –
99 of
99