The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 72

Showing per page

Tame tensor products of algebras

Zbigniew Leszczyński, Andrzej Skowroński (2003)

Colloquium Mathematicae

With the help of Galois coverings, we describe the tame tensor products A K B of basic, connected, nonsimple, finite-dimensional algebras A and B over an algebraically closed field K. In particular, the description of all tame group algebras AG of finite groups G over finite-dimensional algebras A is completed.

Tame three-partite subamalgams of tiled orders of polynomial growth

Daniel Simson (1999)

Colloquium Mathematicae

Assume that K is an algebraically closed field. Let D be a complete discrete valuation domain with a unique maximal ideal p and residue field D/p ≌ K. We also assume that D is an algebra over the field K . We study subamalgam D-suborders Λ (1.2) of tiled D-orders Λ (1.1). A simple criterion for a tame lattice type subamalgam D-order Λ to be of polynomial growth is given in Theorem 1.5. Tame lattice type subamalgam D-orders Λ of non-polynomial growth are completely described in Theorem 6.2 and Corollary...

Tame triangular matrix algebras

Zbigniew Leszczyński, Andrzej Skowroński (2000)

Colloquium Mathematicae

We describe all finite-dimensional algebras A over an algebraically closed field for which the algebra T 2 ( A ) of 2×2 upper triangular matrices over A is of tame representation type. Moreover, the algebras A for which T 2 ( A ) is of polynomial growth (respectively, domestic, of finite representation type) are also characterized.

Tameness criterion for posets with zero-relations and three-partite subamalgams of tiled orders

Stanisław Kasjan (2002)

Colloquium Mathematicae

A criterion for tame prinjective type for a class of posets with zero-relations is given in terms of the associated prinjective Tits quadratic form and a list of hypercritical posets. A consequence of this result is that if Λ is a three-partite subamalgam of a tiled order then it is of tame lattice type if and only if the reduced Tits quadratic form q Λ associated with Λ in [26] is weakly non-negative. The result generalizes a criterion for tameness of such orders given by Simson [28] and gives an...

Tensor products of higher almost split sequences in subcategories

Xiaojian Lu, Deren Luo (2023)

Czechoslovak Mathematical Journal

We introduce the algebras satisfying the ( , n ) condition. If Λ , Γ are algebras satisfying the ( , n ) , ( , m ) condition, respectively, we give a construction of ( m + n ) -almost split sequences in some subcategories ( ) ( i 0 , j 0 ) of mod ( Λ Γ ) by tensor products and mapping cones. Moreover, we prove that the tensor product algebra Λ Γ satisfies the ( ( ) ( i 0 , j 0 ) , n + m ) condition for some integers i 0 , j 0 ; this construction unifies and extends the work of A. Pasquali (2017), (2019).

The combinatorics of quiver representations

Harm Derksen, Jerzy Weyman (2011)

Annales de l’institut Fourier

We give a description of faces, of all codimensions, for the cones spanned by the set of weights associated to the rings of semi-invariants of quivers. For a triple flag quiver and its faces of codimension 1 this description reduces to the result of Knutson-Tao-Woodward on the facets of the Klyachko cone. We give new applications to Littlewood-Richardson coefficients, including a product formula for LR-coefficients corresponding to triples of partitions lying on a wall of the Klyachko cone. We systematically...

Currently displaying 1 – 20 of 72

Page 1 Next