The search session has expired. Please query the service again.
We show that there are exactly three types of Hilbert series of Artin-Schelter regular algebras of dimension five with two generators. One of these cases (the most extreme) may not be realized by an enveloping algebra of a graded Lie algebra. This is a new phenomenon compared to lower dimensions, where all resolution types may be realized by such enveloping algebras.
The need for a noncommutative algebraic geometry is apparent in classical invariant and moduli theory. It is, in general, impossible to find commuting parameters parametrizing all orbits of a Lie group acting on a scheme. When one orbit is contained in the closure of another, the orbit space cannot, in a natural way, be given a scheme structure. In this paper we shall show that one may overcome these difficulties by introducing a noncommutative algebraic geometry, where affine schemes are modeled...
We generalize the results of Kahn about a correspondence between Cohen-Macaulay modules and vector bundles to non-commutative surface singularities. As an application, we give examples of non-commutative surface singularities which are not Cohen-Macaulay finite, but are Cohen-Macaulay tame.
Currently displaying 1 –
8 of
8