The search session has expired. Please query the service again.
Displaying 201 –
220 of
252
The algebras ℂ (complex numbers), ℍ (quaternions), and 𝕆 (octonions) are real division algebras obtained from the real numbers ℝ by a doubling procedure called the Cayley-Dickson Process. By doubling ℝ (dim 1), we obtain ℂ (dim 2), then ℂ produces ℍ (dim 4), and ℍ yields 𝕆 (dim 8). The next doubling process applied to 𝕆 then yields an algebra 𝕊 (dim 16) called the sedenions. This study deals with the subalgebra structure of the sedenion algebra 𝕊 and its zero divisors. In particular, it shows...
[For the entire collection see Zbl 0742.00067.]In the first part some general results on Hecke algebras are recalled; the structure constants corresponding to the standard basis are defined; in the following the example of the commuting algebra of the Gelfand- Graev representation of the general linear group is examined; here is a finite field of elements; the structure constants are explicitly determined first for the standard basis and then for a new basis obtained via a Mellin-transformation....
In this paper we consider completely decomposable torsion-free groups and we determine the subgroups which are ideals in every ring over such groups.
Two different models for a Hopf-von Neumann algebra of bounded functions on the quantum semigroup of all (quantum) permutations of infinitely many elements are proposed, one based on projective limits of enveloping von Neumann algebras related to finite quantum permutation groups, and the second on a universal property with respect to infinite magic unitaries.
By exploiting his recent results, the author further investigates the extent to which variation in the coefficients of a unitary convex decomposition of a vector in a unital -algebra permits the vector decomposable as convex combination of fewer unitaries; certain -algebra results due to M. Rørdam have been extended to the general setting of -algebras.
We study some embeddings of suitably topologized spaces of vector-valued smooth functions on topological groups, where smoothness is defined via differentiability along continuous one-parameter subgroups. As an application, we investigate the canonical correspondences between the universal enveloping algebra, the invariant local operators, and the convolution algebra of distributions supported at the unit element of any finite-dimensional Lie group, when one passes from finite-dimensional Lie groups...
Currently displaying 201 –
220 of
252