The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We introduce the concept of relative Hom-Hopf modules and investigate their structure in a monoidal category . More particularly, the fundamental theorem for relative Hom-Hopf modules is proved under the assumption that the Hom-comodule algebra is cleft. Moreover, Maschke’s theorem for relative Hom-Hopf modules is established when there is a multiplicative total Hom-integral.
We introduce the class of split regular Hom-Poisson algebras formed by those Hom-Poisson algebras whose underlying Hom-Lie algebras are split and regular. This class is the natural extension of the ones of split Hom-Lie algebras and of split Poisson algebras. We show that the structure theorems for split Poisson algebras can be extended to the more general setting of split regular Hom-Poisson algebras. That is, we prove that an arbitrary split regular Hom-Poisson algebra is of the form with U...
We classify all complex - and -dimensional dual mock-Lie algebras by the algebraic and geometric way. Also, we find all non-trivial complex -dimensional dual mock-Lie algebras.
Currently displaying 1 –
6 of
6