Displaying 2121 – 2140 of 3021

Showing per page

Quiver bialgebras and monoidal categories

Hua-Lin Huang, Blas Torrecillas (2013)

Colloquium Mathematicae

We study bialgebra structures on quiver coalgebras and monoidal structures on the categories of locally nilpotent and locally finite quiver representations. It is shown that the path coalgebra of an arbitrary quiver admits natural bialgebra structures. This endows the category of locally nilpotent and locally finite representations of an arbitrary quiver with natural monoidal structures from bialgebras. We also obtain theorems of Gabriel type for pointed bialgebras and hereditary finite pointed...

Radicals which define factorization systems

Barry J. Gardner (1991)

Commentationes Mathematicae Universitatis Carolinae

A method due to Fay and Walls for associating a factorization system with a radical is examined for associative rings. It is shown that a factorization system results if and only if the radical is strict and supernilpotent. For groups and non-associative rings, no radical defines a factorization system.

Rad-supplemented modules

Engin Büyükaşik, Engin Mermut, Salahattin Özdemir (2010)

Rendiconti del Seminario Matematico della Università di Padova

Rank additivity for quasi-tilted algebras of canonical type

Thomas Hübner (1998)

Colloquium Mathematicae

Given the category X of coherent sheaves over a weighted projective line X = X ( λ , p ) (of any representation type), the endomorphism ring Σ = ( 𝒯 ) of an arbitrary tilting sheaf - which is by definition an almost concealed canonical algebra - is shown to satisfy a rank additivity property (Theorem 3.2). Moreover, this property extends to the representationinfinite quasi-tilted algebras of canonical type (Theorem 4.2). Finally, it is demonstrated that rank additivity does not generalize to the case of tilting complexes...

Currently displaying 2121 – 2140 of 3021