Displaying 2381 – 2400 of 3021

Showing per page

Stable tubes in extriangulated categories

Li Wang, Jiaqun Wei, Haicheng Zhang (2022)

Czechoslovak Mathematical Journal

Let 𝒳 be a semibrick in an extriangulated category. If 𝒳 is a τ -semibrick, then the Auslander-Reiten quiver Γ ( ( 𝒳 ) ) of the filtration subcategory ( 𝒳 ) generated by 𝒳 is 𝔸 . If 𝒳 = { X i } i = 1 t is a τ -cycle semibrick, then Γ ( ( 𝒳 ) ) is 𝔸 / τ 𝔸 t .

Stacks of group representations

Paul Balmer (2015)

Journal of the European Mathematical Society

We start with a small paradigm shift about group representations, namely the observation that restriction to a subgroup can be understood as an extension-of-scalars. We deduce that, given a group G , the derived and the stable categories of representations of a subgroup H can be constructed out of the corresponding category for G by a purely triangulated-categorical construction, analogous to étale extension in algebraic geometry. In the case of finite groups, we then use descent methods to investigate...

Statistical convergence of subsequences of a given sequence

Martin Máčaj, Tibor Šalát (2001)

Mathematica Bohemica

This paper is closely related to the paper of Harry I. Miller: Measure theoretical subsequence characterization of statistical convergence, Trans. Amer. Math. Soc. 347 (1995), 1811–1819 and contains a general investigation of statistical convergence of subsequences of an arbitrary sequence from the point of view of Lebesgue measure, Hausdorff dimensions and Baire’s categories.

Currently displaying 2381 – 2400 of 3021