Synthetic differential geometry of higher-order total differentials
In previous papers, various notions of pre-Hausdorff, Hausdorff and regular objects at a point in a topological category were introduced and compared. The main objective of this paper is to characterize each of these notions of pre-Hausdorff, Hausdorff and regular objects locally in the category of proximity spaces. Furthermore, the relationships that arise among the various , , , structures at a point are investigated. Finally, we examine the relationships between the generalized separation...
We consider Taylor approximation for functors from the small category of finite pointed sets to modules and give an explicit description for the homology of the layers of the Taylor tower. These layers are shown to be fibrant objects in a suitable closed model category structure. Explicit calculations are presented in characteristic zero including an application to higher order Hochschild homology. A spectral sequence for the homology of the homotopy fibres of this approximation is provided.
We study the Taylor towers of the nth symmetric and exterior power functors, Spⁿ and Λⁿ. We obtain a description of the layers of the Taylor towers, and , in terms of the first terms in the Taylor towers of and for t < n. The homology of these first terms is related to the stable derived functors (in the sense of Dold and Puppe) of and . We use stable derived functor calculations of Dold and Puppe to determine the lowest nontrivial homology groups for and .