Displaying 1021 – 1040 of 3013

Showing per page

Families of functions dominated by distributions of C -classes of mappings

Goo Ishikawa (1983)

Annales de l'institut Fourier

A subsheaf of the sheaf Ω of germs C functions over an open subset Ω of R n is called a sheaf of sub C function. Comparing with the investigations of sheaves of ideals of Ω , we study the finite presentability of certain sheaves of sub C -rings. Especially we treat the sheaf defined by the distribution of Mather’s 𝒞 -classes of a C mapping.

Familles de Hurwitz et cohomologie non abélienne

Pierre Dèbes, Jean-Claude Douai, Michel Emsalem (2000)

Annales de l'institut Fourier

Nous nous intéressons à la question de l’existence de familles de Hurwitz au-dessus d’un espace de modules de revêtements de la droite. On sait que de telles familles existent dans le cas où les revêtements n’ont pas d’automorphismes. Dans le cas général, il y a une obstruction cohomologique, de nature non-abélienne. Nous donnons une double description de cette obstruction : la première en termes de gerbe, l’outil le mieux adapté à des situations cohomologiques non-abéliennes et la deuxièmes en...

Feedback, trace and fixed-point semantics

P. Katis, Nicoletta Sabadini, Robert F. C. Walters (2002)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

We introduce a notion of category with feedback-with-delay, closely related to the notion of traced monoidal category, and show that the Circ construction of [15] is the free category with feedback on a symmetric monoidal category. Combining with the Int construction of Joyal et al. [12] we obtain a description of the free compact closed category on a symmetric monoidal category. We thus obtain a categorical analogue of the classical localization of a ring with respect to a multiplicative subset....

Feedback, trace and fixed-point semantics

P. Katis, Nicoletta Sabadini, Robert F.C. Walters (2010)

RAIRO - Theoretical Informatics and Applications

We introduce a notion of category with feedback-with-delay, closely related to the notion of traced monoidal category, and show that the Circ construction of [15] is the free category with feedback on a symmetric monoidal category. Combining with the Int construction of Joyal et al. [12] we obtain a description of the free compact closed category on a symmetric monoidal category. We thus obtain a categorical analogue of the classical localization of a ring with respect to a multiplicative subset....

Fibrations and recursivity

Richard Mijoule (1995)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

Finitary fibrations

Grzegorz Jarzembski (1989)

Cahiers de Topologie et Géométrie Différentielle Catégoriques

Currently displaying 1021 – 1040 of 3013