The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 101 –
120 of
456
In the classical Witt theory over a field F, the study of quadratic forms begins with two simple invariants: the dimension of a form modulo 2, called the dimension index and denoted e⁰: W(F) → ℤ/2, and the discriminant e¹ with values in k₁(F) = F*/F*², which behaves well on the fundamental ideal I(F)= ker(e⁰).
Here a more sophisticated situation is considered, of quadratic forms over a scheme and, more generally, over an exact category with duality. Our purposes are:
...
Building on the theory of elliptic operators, we give a unified treatment of the
following topics: - the problem of homotopy invariance of Novikov’s higher
signatures on closed manifolds, - the problem of cut-and-paste invariance of
Novikov’s higher signatures on closed manifolds, - the problem of defining
higher signatures on manifolds with boundary and proving their homotopy invariance.
Let be a finite group with a Sylow 2-subgroup which is either quaternion or semi-dihedral. Let be an algebraically closed field of characteristic 2. We prove the existence of exotic endotrivial -modules, whose restrictions to are isomorphic to the direct sum of the known exotic endotrivial -modules and some projective modules. This provides a description of the group of endotrivial -modules.
Soit un enlacement de intervalles dans d’extérieur et soit . On utilise la propriété de la paire d’être -acyclique pour certaines représentation de l’anneau du groupe fondamental de dans un anneau pour construire des invariants de torsion à valeurs dans le groupe . Un cas particulier est le polynôme d’Alexander en variables quand est l’anneau des fractions rationnelles avec et est simplement l’abélianisation.
We study some functional equations between Mahler measures of genus-one curves in terms of isogenies between the curves. These equations have the potential to establish relationships between Mahler measure and especial values of -functions. These notes are based on a talk that the author gave at the “Cuartas Jornadas de Teoría de Números”, Bilbao, 2011.
We obtain several several results on the multiplicative structure constants of the T-equivariant Grothendieck ring of the flag variety G/B. We do this by lifting the classes of the structure sheaves of Schubert varieties in to R(T) ⊗ R(T), where R(T) denotes the representation ring of the torus T. We further apply our results to describe the multiplicative structure constants of where X denotes the wonderful compactification of the adjoint group of G, in terms of the structure constants of...
Currently displaying 101 –
120 of
456