Cohomologie galoisienne : progrès et problèmes
Let be a non-archimedean local field. This paper gives an explicit isomorphism between the dual of the special representation of and the space of harmonic cochains defined on the Bruhat-Tits building of , in the sense of E. de Shalit [11]. We deduce, applying the results of a paper of P. Schneider and U. Stuhler [9], that there exists a -equivariant isomorphism between the cohomology group of the Drinfeld symmetric space and the space of harmonic cochains.
Let be a prime and let be a -group of matrices in , for some integer . In this paper we show that, when , a certain subgroup of the cohomology group is trivial. We also show that this statement can be false when . Together with a result of Dvornicich and Zannier (see [2]), we obtain that any algebraic torus of dimension enjoys a local-global principle on divisibility by .
We give a survey of the work of Milnor, Friedlander, Mislin, Suslin and other authors on the Friedlander-Milnor conjecture on the homology of Lie groups made discrete and its relation to the algebraic K-theory of fields.