Combinatorial results for semigroups of order-decreasing partial transformations.
We describe how the graded minimal resolution of certain semigroup algebras is related to the combinatorics of some simplicial complexes. We obtain characterizations of the Cohen-Macaulay and Gorenstein conditions. The Cohen-Macaulay type is computed from combinatorics. As an application, we compute explicitly the graded minimal resolution of monomial both affine and simplicial projective surfaces.
Let Out(Fn) denote the outer automorphism group of the free group Fn with n>3. We prove that for any finite index subgroup Γ<Out(Fn), the group Aut(Γ) is isomorphic to the normalizer of Γ in Out(Fn). We prove that Γ is co-Hopfian: every injective homomorphism Γ→Γ is surjective. Finally, we prove that the abstract commensurator Comm(Out(Fn)) is isomorphic to Out(Fn).
The article considers a problem from Trokhimenko paper [13] concerning the study of abstract properties of commutations of operations and their connection with the Menger and Mann superpositions. Namely, abstract characterizations of some classes of operation algebras, whose signature consists of arbitrary families of commutations of operations, Menger and Mann superpositions and their various connections are found. Some unsolved problems are given at the end of the article.
A new class of abelian -groups with all high subgroups isomorphic is defined. Commutative modular and semisimple group algebras over such groups are examined. The results obtained continue our recent statements published in Comment. Math. Univ. Carolinae (2002).