Displaying 341 – 360 of 389

Showing per page

Groups with the weak minimal condition for non-subnormal subgroups II

Leonid A. Kurdachenko, Howard Smith (2005)

Commentationes Mathematicae Universitatis Carolinae

Let G be a group with the property that there are no infinite descending chains of non-subnormal subgroups of G for which all successive indices are infinite. The main result is that if G is a locally (soluble-by-finite) group with this property then either G has all subgroups subnormal or G is a soluble-by-finite minimax group. This result fills a gap left in an earlier paper by the same authors on groups with the stated property.

Group-theoretic conditions under which closed aspherical manifolds are covered by Euclidean space

Hanspeter Fischer, David G. Wright (2003)

Fundamenta Mathematicae

Hass, Rubinstein, and Scott showed that every closed aspherical (irreducible) 3-manifold whose fundamental group contains the fundamental group of a closed aspherical surface, is covered by Euclidean space. This theorem does not generalize to higher dimensions. However, we provide geometric tools with which variations of this theorem can be proved in all dimensions.

Growth functions for some uniformly amenable groups

Janusz Dronka, Bronislaw Wajnryb, Paweł Witowicz, Kamil Orzechowski (2017)

Open Mathematics

We present a simple constructive proof of the fact that every abelian discrete group is uniformly amenable. We improve the growth function obtained earlier and find the optimal growth function in a particular case. We also compute a growth function for some non-abelian uniformly amenable group.

Currently displaying 341 – 360 of 389