The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 461 – 480 of 987

Showing per page

A remark on a Theorem of J. G. Thompson

Bertram Huppert (1998)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

An important theorem by J. G. Thompson says that a finite group G is p -nilpotent if the prime p divides all degrees (larger than 1) of irreducible characters of G . Unlike many other cases, this theorem does not allow a similar statement for conjugacy classes. For we construct solvable groups of arbitrary p -lenght, in which the lenght of any conjugacy class of non central elements is divisible by p .

A remark on hyper-indecomposable groups

Ladislav Bican (1982)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Un gruppo abeliano senza torsione ed indecomponibile è detto iperindecomponibile se tutti i sottogruppi propri del suo inviluppo iniettivo che lo contengono sono indecomponibili. In questo lavoro si caratterizza la classe dei gruppi iperindecomponibili per mezzo di loro proprietà locali. I gruppi iperindecomponibili omogenei sono caratterizzati tramite la proprietà «factor-splitting».

Currently displaying 461 – 480 of 987