Sur les notions de fonction complète et de fonction périodique
La catégorie des modules de dimension finie sur la super algèbre de Lie n’est pas semi-simple. Elle se décompose en une infinité de blocs, dont on cherche depuis les travaux de Kac en 1977 à comprendre la structure. Vera Serganova apporte une réponse presque complète à ce problème, formulée selon le cercle d’idées introduites par Bernstein, Gelfand et Gelfand pour étudier la catégorie dans le cas classique ; ne disposant pas pour d’analogues des théorèmes de Kostant et de Borel-Weil-Bott,...
Nous définissons une représentation des groupes d’Artin de type par monodromie de systèmes KZ généralisés, dont nous montrons qu’elle est isomorphe à la représentation de Krammer généralisée définie originellement par A.M.Cohen et D.Wales, et indépendamment par F.Digne. Cela implique que tous les groupes d’Artin purs de type sphérique sont résiduellement nilpotents-sans-torsion, donc (bi-)ordonnables. En utilisant cette construction nous montrons que ces représentations irréductibles sont Zariski-denses...
Soit l’ensemble des points rationnels d’un groupe algébrique réductif non connexe -adique de caractéristique . Soit la composante neutre de . On suppose que est commutatif et fini. Notre motivation pour cette note est de rejoindre le cas connexe d’un papier précédent, Bettaïeb, (2003). Autrement dit, de retrouver une analogue à notre classification des représentations irréductibles tempérées de , lorsque est connexe. C’est-à-dire que toute représentation irréductible tempérée de est...
Björner (1984) a montré que l’ordre faible de Bruhat défini sur un groupe de Coxeter fini (Bourbaki 1969) est un treillis. Dans le cas du groupe symétrique ce résultat (treillis permutoèdre) a été prouvé par Guilbaud-Rosenstiehl (1963). Dans ce papier nous montrons que des propriétés connues des treillis permutoèdres peuvent s’étendre à tous les treillis de Coxeter finis et qu’inversement des propriétés démontrées sur tous les Coxeter finis ont des retombées intéressantes sur les permutoèdres....
On calcule dans cet article l’homologie stable des groupes orthogonaux et symplectiques sur un corps fini à coefficients tordus par un endofoncteur usuel des -espaces vectoriels (puissance extérieure, symétrique, divisée...). Par homologie stable, on entend, pour tout entier naturel , les colimites des espaces vectoriels et — dans cette situation, la stabilisation (avec une borne explicite en fonction de et ) est un résultat classique de Charney. Tout d’abord, nous donnons un cadre...