The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 21

Showing per page

A note on the Π -property of some subgroups of finite groups

Zhengtian Qiu, Guiyun Chen, Jianjun Liu (2024)

Czechoslovak Mathematical Journal

Let H be a subgroup of a finite group G . We say that H satisfies the Π -property in G if for any chief factor L / K of G , | G / K : N G / K ( H K / K L / K ) | is a π ( H K / K L / K ) -number. We obtain some criteria for the p -supersolubility or p -nilpotency of a finite group and extend some known results by concerning some subgroups that satisfy the Π -property.

A note on weakly-supplemented subgroups and the solvability of finite groups

Xin Liang, Baiyan Xu (2022)

Czechoslovak Mathematical Journal

Suppose that G is a finite group and H is a subgroup of G . The subgroup H is said to be weakly-supplemented in G if there exists a proper subgroup K of G such that G = H K . In this note, by using the weakly-supplemented subgroups, we point out several mistakes in the proof of Theorem 1.2 of Q. Zhou (2019) and give a counterexample.

A note on weakly-supplemented subgroups of finite groups

Hong Pan (2018)

Czechoslovak Mathematical Journal

A subgroup H of a finite group G is weakly-supplemented in G if there exists a proper subgroup K of G such that G = H K . In the paper, we extend one main result of Kong and Liu (2014).

A remark on a Theorem of J. G. Thompson

Bertram Huppert (1998)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

An important theorem by J. G. Thompson says that a finite group G is p -nilpotent if the prime p divides all degrees (larger than 1) of irreducible characters of G . Unlike many other cases, this theorem does not allow a similar statement for conjugacy classes. For we construct solvable groups of arbitrary p -lenght, in which the lenght of any conjugacy class of non central elements is divisible by p .

Algorithms for permutability in finite groups

Adolfo Ballester-Bolinches, Enric Cosme-Llópez, Ramón Esteban-Romero (2013)

Open Mathematics

In this paper we describe some algorithms to identify permutable and Sylow-permutable subgroups of finite groups, Dedekind and Iwasawa finite groups, and finite T-groups (groups in which normality is transitive), PT-groups (groups in which permutability is transitive), and PST-groups (groups in which Sylow permutability is transitive). These algorithms have been implemented in a package for the computer algebra system GAP.

Currently displaying 1 – 20 of 21

Page 1 Next