Displaying 101 – 120 of 150

Showing per page

Sui gruppi finiti col rango di Cipolla uguale a uno

Guido Zappa (1998)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Sia G un gruppo finito non abeliano e Z il suo centro. Sia I l’insieme parzialmente ordinato dei centralizzanti di G Z . Si dice che G ha «rango 1 » se la lunghezza di I è 0 , e si dice che esso è un « M -gruppo» se ogni H I è abeliano. Ogni M -gruppo ha rango 1 . Schmidt [10] ha classificato gli M -gruppi. In questa Nota si classificano i gruppi di rango 1 che non sono M -gruppi.

Sui gruppi finiti i cui sottogruppi non normali hanno tutti lo stesso ordine

Guido Zappa (2002)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Sia G un gruppo non abeliano né hamiltoniano, ed n un intero 2 . Si dice che G appartiene a S n se tutti i sottogruppi non normali di G hanno ordine n . Sia p un numero primo. In questa Nota vengono determinati: 1) tutti i p -gruppi in S p (Teoremi 1 e 2); 2) tutti i p -gruppi in S p i per i 2 e p 3 (Teorema 3); 3) tutti i gruppi di esponente 4 appartenenti ad S 4 (Teorema 4).

Sulle partizioni dei p -gruppi finiti

Virgilio Pannone (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si studiano le partizioni dei p -gruppi finiti e, in particolare, le equipartizioni. Si danno risultati sulle equipartizioni dei p -gruppi di classe submassimale.

Sulle partizioni dei p -gruppi finiti. II

Virgilio Pannone (1991)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si studiano le partizioni dei p -gruppi finiti e, in particolare, quelle con molti componenti di un dato ordine. Si deriva una condizione necessaria (Teorema 1) per l'esistenza di tali partizioni in termini di gradi dei caratteri irriducibili. Si deducono quindi alcuni corollari e si dà un'applicazione ai gruppi di matrici unitriangolari (Proposizione 3).

Currently displaying 101 – 120 of 150