The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 21 – 40 of 43

Showing per page

A quantitative aspect of non-unique factorizations: the Narkiewicz constants III

Weidong Gao, Jiangtao Peng, Qinghai Zhong (2013)

Acta Arithmetica

Let K be an algebraic number field with non-trivial class group G and K be its ring of integers. For k ∈ ℕ and some real x ≥ 1, let F k ( x ) denote the number of non-zero principal ideals a K with norm bounded by x such that a has at most k distinct factorizations into irreducible elements. It is well known that F k ( x ) behaves for x → ∞ asymptotically like x ( l o g x ) 1 - 1 / | G | ( l o g l o g x ) k ( G ) . We prove, among other results, that ( C n C n ) = n + n for all integers n₁,n₂ with 1 < n₁|n₂.

A quantitative aspect of non-unique factorizations: the Narkiewicz constants II

Weidong Gao, Yuanlin Li, Jiangtao Peng (2011)

Colloquium Mathematicae

Let K be an algebraic number field with non-trivial class group G and K be its ring of integers. For k ∈ ℕ and some real x ≥ 1, let F k ( x ) denote the number of non-zero principal ideals a K with norm bounded by x such that a has at most k distinct factorizations into irreducible elements. It is well known that F k ( x ) behaves, for x → ∞, asymptotically like x ( l o g x ) 1 / | G | - 1 ( l o g l o g x ) k ( G ) . In this article, it is proved that for every prime p, ( C p C p ) = 2 p , and it is also proved that ( C m p C m p ) = 2 m p if ( C m C m ) = 2 m and m is large enough. In particular, it is shown that for...

A remark on a Theorem of J. G. Thompson

Bertram Huppert (1998)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

An important theorem by J. G. Thompson says that a finite group G is p -nilpotent if the prime p divides all degrees (larger than 1) of irreducible characters of G . Unlike many other cases, this theorem does not allow a similar statement for conjugacy classes. For we construct solvable groups of arbitrary p -lenght, in which the lenght of any conjugacy class of non central elements is divisible by p .

A result about cosets

John C. Lennox, James Wiegold (1995)

Rendiconti del Seminario Matematico della Università di Padova

A variation of Thompson's conjecture for the symmetric groups

Mahdi Abedei, Ali Iranmanesh, Farrokh Shirjian (2020)

Czechoslovak Mathematical Journal

Let G be a finite group and let N ( G ) denote the set of conjugacy class sizes of G . Thompson’s conjecture states that if G is a centerless group and S is a non-abelian simple group satisfying N ( G ) = N ( S ) , then G S . In this paper, we investigate a variation of this conjecture for some symmetric groups under a weaker assumption. In particular, it is shown that G Sym ( p + 1 ) if and only if | G | = ( p + 1 ) ! and G has a special conjugacy class of size ( p + 1 ) ! / p , where p > 5 is a prime number. Consequently, if G is a centerless group with N ( G ) = N ( Sym ( p + 1 ) ) , then G Sym ( p + 1 ) .

Currently displaying 21 – 40 of 43